| 融合长短期记忆网络和支持向量机的Wi-Fi室内入侵检测 | |
| 所属分类:技术论文 | |
| 上传者:wwei | |
| 文档大小:4799 K | |
| 标签: 室内入侵 长短期记忆网络 支持向量机 | |
| 所需积分:0分积分不够怎么办? | |
| 文档介绍:基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Short-Term Memory and Support Vector Machine Intrusion Detection)。LSID方法采用一种新的特征值建模方式,利用长短期记忆网络可以学习到时序特征并且能捕捉时序信号长期的依赖关系,将信道状态信息真实值与长短期记忆神经网络的预测值之差作为特征值,能更准确地捕捉入侵者对信号状态信息的影响。该检测方法在学校实验室环境下经过多次实验验证,最终检测准确率达到99.21%,通过多组实验比对,结果显示LSID方法具有有效性和可行性,相比于其他入侵检测方法准确率明显提升。 | |
| 现在下载 | |
| VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 | |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有