| 基于大模型的事件抽取技术及军事应用思考 | |
| 所属分类:技术论文 | |
| 上传者:wwei | |
| 文档大小:995 K | |
| 标签: 事件抽取 机器学习 深度学习 | |
| 所需积分:0分积分不够怎么办? | |
| 文档介绍:事件抽取旨在从非结构化文本中抽取出结构化事件信息,以便清晰、方便、直观地掌握并利用相关的关键信息。传统机器学习方法依赖于特征工程,利用人工构建的特征来进行事件抽取。而基于深度学习的方法利用CNN、RNN、GNN等深层神经网络通过提取重要特征来展开,但其依赖于大量的标注数据。近年来,研究者开始利用基于Transformer架构的大规模语言模型如BERT、GPT等采用预训练+微调范式来进行事件抽取并取得显著成效。而最近推出的大模型ChatGPT采用预训练+提示学习范式在自然语言处理领域取得显著成效,可以实现高效准确地抽取出关键的事件信息,将其应用到军事领域会产生重大影响。 | |
| 现在下载 | |
| VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 | |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有